Trigonometric Proof of Steiner-lehmus Theorem in Hyperbolic Geometry

نویسنده

  • Cătălin Barbu
چکیده

In this note, we present a short trigonometric proof to the Steiner Lehmus Theorem in hyperbolic geometry. 2000 Mathematics Subject Classification: 30F45, 20N99, 51B10, 51M10

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Short Trigonometric Proof of the Steiner-Lehmus Theorem

We give a short trigonometric proof of the Steiner-Lehmus theorem. The well known Steiner-Lehmus theorem states that if the internal angle bisectors of two angles of a triangle are equal, then the triangle is isosceles. Unlike its trivial converse, this challenging statement has attracted a lot of attention since 1840, when Professor Lehmus of Berlin wrote to Sturm asking for a purely geometric...

متن کامل

Generalizing the Steiner-Lehmus theorem using the Gröbner cover

In this note we present an application of a new tool (the Gröbner cover method, to discuss parametric polynomial systems of quations) in the realm of automatic discovery of theorems in elementary geometry. Namely, we describe, through a relevant example, ow the Gröbner cover algorithm is particularly well suited to obtain the missing hypotheses for a given geometric statement to hold rue. We de...

متن کامل

A New Proof of Menelaus’s Theorem of Hyperbolic Quadrilaterals in the Poincaré Model of Hyperbolic Geometry

In this study, we present a proof of the Menelaus theorem for quadrilaterals in hyperbolic geometry, and a proof for the transversal theorem for triangles.

متن کامل

Research Summary

In my doctoral dissertation (directed by W. P. Thurston) I studied the geometry of convex polyhedra in hyperbolic 3-space H3, and succeeded in producing a geometric characterization of dihedral angles of compact convex polyhedra by reducing the question to a convex isometric embedding problem in the De Sitter sphere, and resolving this problem. In particular, this produced a simple alternative ...

متن کامل

The theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry

In [Comput. Math. Appl. 41 (2001), 135–147], A.A. Ungar employs the Möbius gyrovector spaces for the introduction of the hyperbolic trigonometry. This Ungar’s work plays a major role in translating some theorems from Euclidean geometry to corresponding theorems in hyperbolic geometry. In this paper we explore the theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010